Home
Class 12
MATHS
Evaluate lim(x to 0) (tan(sgn(x)))/(sgn(...

Evaluate `lim_(x to 0) (tan(sgn(x)))/(sgn(x))` if exists.

Text Solution

Verified by Experts

The correct Answer is:
`tan1`

`underset(xto0^(+))lim(tan(sgn(x)))/(sgn(x))=(tan1)/(1)=tan1`
`underset(xto0^(-))lim(tan(sgn(x)))/(sgn(x))=tan(-1)/((-1))=tan1`
`:." "underset(xto0)lim(tan(sgn(x)))/(sgn(x))=tan1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate "lim_(x rarr0)x tan(1/x)

The value of lim_(x rarr0)[(sin(sgn x))/(sgn x)]

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Evaluate: lim_(x rarr0)(a^(tan x)-a^(sin x))/(tan x-sin x),a>0

Evaluate :lim_(x rarr0)(int_(0)^(x)tan xdx)/(x tan x)

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

If lim_(x rarr0)((tan x)/(x))^((tan x)/(x-tan x) exists and equal to l , then which of the following is ( are ) correct?

lim_(x rarr pi)sgn[tan x]

sgn(x)=(|x|)/(x)=0 when x=0

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.