Home
Class 12
MATHS
If f(x)={{:(sinx","" "xnenpi", "ninI),...

If `f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):}` and
`g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):}` then find `lim_(xto0) g{f(x)}`.

Text Solution

Verified by Experts

The correct Answer is:
1

`underset(xto0^(+))limg{f(x)}=g(f(0^(+)))=g((sin0^(+)))=g(0^(+))=(0)^(2)+1=1`
`underset(xto0^(-))limg{f(x)}=g(f(0^(-)))=g((sin0^(-)))=g(0^(-))=(0)^(2)+1=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:(sin x"," x ne npi"," n = 0"," pm1"," pm2","...),(" 2, ""otherwise"):}} and g (x) ={{:(x^(2)+1"," x ne 0","2),(" 4, "x=0),(" 5, "x=2):}},"then" lim_(x to 0) g[f(x)] is ………

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

If f (x)= |{:(x cos x, 2x sin x, x tan x),(1,x,1),(1,2x,1):}|, find lim _(xto0) (f(x))/(x ^(2)).

Determine if f defined by : f(x)={{:(x^(2)"sin"1/x", if "xne0),(0", if "x=0):} is a continuous function ?

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)