Home
Class 12
MATHS
If f(x)={{:((sin[x])/([x])","" ""for "[...

If `f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):}`where `[x]` denotes the greatest integer less than or equal to x. Then find `lim_(xto0)f(x).`

Text Solution

Verified by Experts

The correct Answer is:
Limit does not exist.

We have `f(x)={{:((sin[x])/([x])" ""if "x in(-oo", "0)uu[1", "oo)),(0" "" if "x in[0", "1)):}`
`:." "underset(xto0^(-))limf(x)=underset(hto0)lim(sin[-h])/( [-h])=underset(hto0)lim(sin(-1))/((-1))=sin1`
and `underset(xto0^(+))limf(x)=underset(hto0)lim0=0`
Thus `underset(xto0-)limf(x)neunderset(xto0+)limf(x)`
`:." "underset(xto0^(-))limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

if [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0)(x[x])/(sin|x|) , is

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2

If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the greatest integer less than or equal to x then

If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0) f(x) is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is