Home
Class 12
MATHS
Let the sequence ltb(n)gt of real number...

Let the sequence `ltb_(n)gt` of real numbers satisfy the recurrence relation `b_(n+1)=1/3(2b_(n)+(125)/(b_(n)^(2))),b_(n)ne0.` Then find `lim_(ntoo0) b_(n).`

Text Solution

Verified by Experts

The correct Answer is:
5

Let `underset(ntooo)limb_(n)=b`
Now `b_(n+1)=1/3(2b_(n)+(125)/(b_(n)^(2)))`
`implies" "underset(ntooo)limb_(n+1)=1/3(2underset(ntooo)limb_(n)+(125)/(underset(ntooo)limb_(n)^(2)))`
`implies" "b=1/3(2b+(125)/(b^(2)))" "( :.underset(ntooo)limb_(n)=underset(ntooo)limb_(n+1)=b)`
`implies" "b/3=(125)/(3b^(2))`
`implies" "b^(3)=125`
`implies" "b=5`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let the sequence (:b_(n):) real numbers satisfies the recurrence relation b_(n+1)=(1)/(3)(2b_(n)+(125)/(b_(n)^(2))),b_(n)!=0. Then find the lim_(n rarr oo)b_(n).

If the sequence {a_n}, satisfies the recurrence, a_(n+1) = 3a_n - 2a_(n-1), n ge2, a_0 = 2, a_1 = 3, then a_2007 is

Let a_(1),a_(2),...,a_(n) .be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 Prove that lim_(n rarr oo)((a_(n))/(2^(n-1)))=(2)/(pi)

Two sequences lta_(n)gtandltb_(n)gt are defined by a_(n)=log((5^(n+1))/(3^(n-1))),b_(n)={log((5)/(3))}^(n) , then

The sequence {a_(n)} is defined by formula a _(0) =4 and a _(m +1)=a _(n)^(2) -2a_(n) + 2 for n ge 0. Let the sequence { b _(n)} is defined by formula b _(0) =1/2 and b _(n) = (2 a_(0) a _(1) a _(2)……a _(n-1))/(AA n ge 1. The value of a _(10) is equal to :

If 0ltaltb, then lim_(nto oo) (a^(n)+b^(n))/(a^(n)-b^(n))

Let a=n(a+(1)/(In(n))) and b=(n+(1)/(ln(n)))^(n). The value of lim_(n rarr oo)((a)/(b)) is equal to