Home
Class 12
MATHS
Let f:(1,2)toR satisfy the inequality ...

Let `f:(1,2)toR` satisfy the inequality
`(cos(2x-4)-33)/(2)ltf(x)lt(x^(2)|4x-8|)/(x-2)AAx in(1,2).`
Then find `lim_(xto2^(-)) f(x).`

Text Solution

Verified by Experts

The correct Answer is:
-16

`(cos(2x-4)-33)/(2)ltf(x)lt(x^(2)|4x-8|)/(x-2)`
or `underset(xto2^(-))lim(cos(2x-4)-33)/(2)ltunderset(xto2^(-))limf(x)ltunderset(xto2^(-))lim(x^(2)|4x-8|)/(x-2)`
or `-16ltunderset(xto2^(-))limf(x)ltunderset(xto2^(-))lim(x^(2)(8-4x))/(x-2)`
or `-16ltunderset(xto2^(-))limf(x)lt-16`
or `underset(xto2^(-))limf(x)=-16` (by sandwich theorem)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f:(1,2)rarr R satisfies the inequality (cos(2x-4)-33)/(2)

Iff:(1,2)->R satisfies the inequality (cos(2x-4)-33)/2 lt f(x) lt (x^2|4x-8|) (x-2)="" is

Least integral value of x satisfying the inequation (x^(2)+1)lt(x+2)^(2)lt2xx^(2)+4x-12is

Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim_(xrarr2) f(x)

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

if int_(0)^(f(x))4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x rarr2)g(x)

Evaluate lim_(xto2)(x^(3)-2^(3))/(x-2)

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)