Home
Class 12
MATHS
If (x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x...

If `(x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x^(2)+2x-1)/(x+3)` holds for a certain interval containing the value of `lim_(xto-1) f(x).`

Text Solution

Verified by Experts

The correct Answer is:
-1

`(x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x^(2)+2x-1)/(x+3)`
or `underset(xto-1)lim(x^(2)+x-2)/(x+3)leunderset(xto-1)lim(f(x))/(x^(2))leunderset(xto-1)lim(x^(2)+2x-1)/(x+3)`
or` 1-leunderset(xto-1)lim(f(x))/(x^(2))le-1`
or`underset(xto-1)lim(f(x))/(x^(2))=-1" "`(Using Sandwich theorem)
or`(underset(xto-1)limf(x))/(underset(xto-1)limx^(2))=-1`
or `underset(xto-1)limf(x)=-underset(xto-1)limx^(2)=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If (x^(2)+x-2)/(x+3)<=(f(x))/(x^(2))<=(x^(2)+2x-1)/(x+3) hold for a certain interval containing the point x=-1 and lim_(x rarr1)f(x) then find the value of lim_(x rarr1)f(x)

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If f(x) {: (=(x^(2)-2x-3)/(x-3)" , for " 0 le x le 4 ),(= (x^(2)-1)/(x+2)", for " 4 lt x le 6 " then "):}

Show that f(x)=x^(2)e^(-x), 0 le x le 2 is increasing in the indicated interval.

Let f(x) = " max " {3,x^(2),(1)/(x^(2))} for (1)/(2) le x le 2 . Then the value of integral int_(1//2)^(2)f(x) dx is

If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2):} then,

If f(x)={:{((x^(2)-3x+2)/(x-3)", for " 0 le x lt 4),((x^(2)-1)/(x-2)", for " 4 le x le 6):} , then on [0, 6]