Home
Class 12
MATHS
Evaluate lim(ntooo) ((1^(2)-2^(2)+3^(2)-...

Evaluate `lim_(ntooo) ((1^(2)-2^(2)+3^(2)-4^(2)+5^(2)+...n" terms"))/(n^(2)).`

Text Solution

Verified by Experts

The correct Answer is:
`1//2" or "-1//2`

When n is even:
Given series
`1^(2)-2^(2)+3^(2)-4^(2)+...-n^(2)`
`(1^(2)-2^(2))+(3^(2)-4^(2))+...[(n-1)^(2)-n^(2)]`
`=-(1+2+3+4+...+n)`
`=-(n(n+1))/(2)`
`:. "Given "L=underset(ntooo)lim(n(n+1))/(2n^(2))=-1/2`
When n is odd:
Given series
`1^(2)-2^(2)+3^(2)-4^(2)+...+n^(2)`
`=-1(1+2+3+...+(n-1))+n^(2)`
`=-(n(n-1))/(2)+n^(2)`
`=(n(n+1))/(2)`
`:." Given "L=underset(ntooo)lim(n(n+1))/(2n^(2))=1/2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo)(pin)^(2//n)

Evaluate the limit: (lim)_(n rarr oo)((1^(2)-2^(2)+3^(3)-4^(2)+5^(2)+nterms)/(n^(2))

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

lim_ (n rarr oo) ((1 ^ (2) -2 ^ (2) + 3 ^ (2) -4 ^ (2) + 5 ^ (2) + ... nterms)) / (n ^ (2 ))

lim_(ntooo)(n-sqrt(n^(2)+n))

Evaluate: lim_(n rarr oo) ((1^(2)+2^(2)+3^(2)+...+n^(2)))/((1+3+5+7+...+"n terms")) .

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).