Home
Class 12
MATHS
Evaluate lim(xtooo) x^(3){sqrt(x^(2)+sqr...

Evaluate `lim_(xtooo) x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-xsqrt(2)}.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} x^3 \left( \sqrt{x^2 + \sqrt{1 + x^4}} - x \sqrt{2} \right), \] we will follow these steps: ### Step 1: Rewrite the expression We start with the limit expression: \[ \lim_{x \to \infty} x^3 \left( \sqrt{x^2 + \sqrt{1 + x^4}} - x \sqrt{2} \right). \] ### Step 2: Multiply by the conjugate To simplify the expression, we multiply and divide by the conjugate: \[ \lim_{x \to \infty} \frac{x^3 \left( \sqrt{x^2 + \sqrt{1 + x^4}} - x \sqrt{2} \right) \left( \sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2} \right)}{\sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2}}. \] This gives us: \[ \lim_{x \to \infty} \frac{x^3 \left( \left( \sqrt{x^2 + \sqrt{1 + x^4}} \right)^2 - \left( x \sqrt{2} \right)^2 \right)}{\sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2}}. \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \left( x^2 + \sqrt{1 + x^4} - 2x^2 \right) = \sqrt{1 + x^4} - x^2. \] Thus, we have: \[ \lim_{x \to \infty} \frac{x^3 \left( \sqrt{1 + x^4} - x^2 \right)}{\sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2}}. \] ### Step 4: Simplify \(\sqrt{1 + x^4}\) For large \(x\), we can approximate \(\sqrt{1 + x^4}\) as: \[ \sqrt{1 + x^4} \approx x^2 \sqrt{1 + \frac{1}{x^4}} \approx x^2 \left( 1 + \frac{1}{2x^4} \right) = x^2 + \frac{1}{2x^2}. \] So, \[ \sqrt{1 + x^4} - x^2 \approx \frac{1}{2x^2}. \] ### Step 5: Substitute back into the limit Now substituting back, we get: \[ \lim_{x \to \infty} \frac{x^3 \cdot \frac{1}{2x^2}}{\sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2}} = \lim_{x \to \infty} \frac{\frac{x}{2}}{\sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2}}. \] ### Step 6: Simplify the denominator For large \(x\), \(\sqrt{x^2 + \sqrt{1 + x^4}} \approx x\), thus: \[ \sqrt{x^2 + \sqrt{1 + x^4}} + x \sqrt{2} \approx x + x \sqrt{2} = x(1 + \sqrt{2}). \] ### Step 7: Final limit calculation Now we have: \[ \lim_{x \to \infty} \frac{\frac{x}{2}}{x(1 + \sqrt{2})} = \lim_{x \to \infty} \frac{1}{2(1 + \sqrt{2})} = \frac{1}{2(1 + \sqrt{2})}. \] ### Final Answer Thus, the limit evaluates to: \[ \frac{1}{2(1 + \sqrt{2})}. \]

To evaluate the limit \[ \lim_{x \to \infty} x^3 \left( \sqrt{x^2 + \sqrt{1 + x^4}} - x \sqrt{2} \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr oo)x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)}

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

lim_(xtooo)[x-sqrt(x^(2)+x]]

Evaluate lim_(xtooo)(1+2/x)^(x)

Evaluate lim_(xtooo) (1+(2)/(x))^(x).

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate lim_(xtooo)(x^(2)+5)/(x^(2)+4x+3)