Home
Class 12
MATHS
Evaluate lim(x to 1) sum(k=1)^(100) x^(...

Evaluate `lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).`

Text Solution

Verified by Experts

The correct Answer is:
5050

`underset(x to 1)("lim")([sum_(k=1)^(100)x^(k)] - 100)/((x-1))`
`=underset(xto1)lim((x+x^(2)+x^(3)+...+x^(100))-100)/((x-1))`
`=underset(xto1)lim((x-1)+(x^(2)-1)+(x^(3)-1)+...+(x^(100)-1))/((x-1))`
`=underset(xto1)lim{((x-1)/(x-1))+((x^(2)-1)/(x-1))+((x^(3)-1)/(x-1))+....+((x^(100)-1)/(x-1))}`
`=underset(xto1)lim{((x-1)/(x-1))+underset(xto1)lim((x^(2)-1)/(x-1))+underset(xto1)lim((x^(3)-1)/(x-1))+...`
`underset(xto1)lim((x^(100)-1)/(x-1))=1+2+3+...+100`
`=(100xx101)/(2)=5050`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limit: lim_(x rarr1)(sum_(k=1)^(oo0)x^(k)-100)/(x-1)

lim_ (x rarr1) ([sum_ (k = 1) ^ (100) x ^ (k)] - 100] ()) / (x-1)

lim_ (x rarr1) ((sum_ (k = 1) ^ (200) x ^ (K)) - 200) / (x-1)

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Y = sum_ (k = 0) ^ (5) x ^ (k) a ^ (k-1)

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

the last two digits in X=sum_(k=1)^(100)k!

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate lim_(x to 0) (k^([x]) - 1- |x| In K)/(x^(2)) , k gt 0