Home
Class 12
MATHS
The value of lim(xto(1)/(sqrt(2))) (x-co...

The value of `lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "`

A

`-(1)/(sqrt(2))`

B

-1

C

non-existent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)} \), we will follow these steps: ### Step 1: Substitute \( \sin^{-1} x \) with \( t \) Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \] As \( x \to \frac{1}{\sqrt{2}} \), we find \( t \): \[ t = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \] ### Step 2: Rewrite the limit in terms of \( t \) Substituting \( x \) in the limit gives: \[ \lim_{t \to \frac{\pi}{4}} \frac{\sin t - \cos t}{1 - \tan t} \] ### Step 3: Evaluate the limit Now, we substitute \( t = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we have: \[ \frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{1 - 1} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule We differentiate the numerator and denominator: - The derivative of the numerator \( \sin t - \cos t \) is \( \cos t + \sin t \). - The derivative of the denominator \( 1 - \tan t \) is \( -\sec^2 t \). Thus, we rewrite the limit: \[ \lim_{t \to \frac{\pi}{4}} \frac{\cos t + \sin t}{-\sec^2 t} \] ### Step 5: Substitute \( t = \frac{\pi}{4} \) again Now substituting \( t = \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \] And, \[ -\sec^2\left(\frac{\pi}{4}\right) = -2 \] Thus, the limit becomes: \[ \frac{\sqrt{2}}{-2} = -\frac{\sqrt{2}}{2} \] ### Final Answer The value of the limit is: \[ \lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)} = -\frac{\sqrt{2}}{2} \]

To solve the limit \( \lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)} \), we will follow these steps: ### Step 1: Substitute \( \sin^{-1} x \) with \( t \) Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \] As \( x \to \frac{1}{\sqrt{2}} \), we find \( t \): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x)) is -(1)/(sqrt(2)) (b) (1)/(sqrt(2)) (c) sqrt(2)(d)-sqrt(2)

Lt_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))=

lim_(x->1/sqrt2) (x-cos(sin^-1 x))/(1-tan(sin^-1x))

The value of lim_(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

The value of lim_(xto1^(-)) (1-sqrt(x))/((cos^(-1)x)^(2)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos^(2)(tanx))) is ………..

The value of lim_(xto2)sqrt(1-cos 2(x-2))/(x-2) , is

Evaluate, lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x)

The value of (lim_(x rarr0)((cos x-sqrt(1+sin^(2)x))/(1-sqrt(1+tan^(2)x)))) is equal to "

CENGAGE-LIMITS-Exercise (Single)
  1. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  2. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  3. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  4. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  5. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  6. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  7. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  8. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  9. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  10. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  11. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  12. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  13. lim(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

    Text Solution

    |

  14. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  15. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  16. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n+1)-(n)/(1-2n).(...

    Text Solution

    |

  17. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  18. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  19. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  20. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |