Home
Class 12
MATHS
f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(...

`f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))`. Then `lim_(x to oo)` f(x) is equal to

A

`(2a)/(pi)`

B

`-(2a)/(pi)`

C

`(4a)/(pi)`

D

`-(4a)/(pi)`

Text Solution

Verified by Experts

The correct Answer is:
B

`L=underset(xtooo)lim("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))=underset(xtooo)lim("ln "e^(x)(1+(x^(2))/(e^(x))))/("ln "e^(2x)(1+(x^(4))/(e^(2x))))`
`=underset(xtooo)lim(x+"ln "(1+(x^(4))/(e^(x))))/(2x+"ln "(1+(x^(4))/(e^(2x))))`
`=underset(xtooo)lim(1+(1)/(x)" ln "(1+(x^(2))/(e^(x))))/(2+(1)/(x)" ln "(1+(x^(4))/(e^(2x))))`
Note that as `xtooo,(x^(2))/(e^(x))to0` and as `xtooo,(x^(2))/(e^(2x))to0`
(Using L'Hospital's rule)
Hence `L=(1)/(2)`.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

If f^(1)(x)=(1)/(1+(ln x)^(2)) and y=f(e^(tan x)) then (dy)/(dx) is equal to

If (5x-2)/x lt f(x) lt (5x^2-4x)/x^2 and (sinx^2)/x lt g (x) lt (log (1+x^2))/x then |lim_( xtooo)f(x) -lim_( x to oo) g(x)| is equal to

if f(x)=log_(5)log_(3)x then f'(e) is equal to

f(x)=log_(e)|x|,xne0, then f'(x) is equal to

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

If f(x)=ln((x^(2)+e)/(x^(2)+1)), then range of f(x) is

CENGAGE-LIMITS-Exercise (Single)
  1. lim(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

    Text Solution

    |

  2. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  3. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  4. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n+1)-(n)/(1-2n).(...

    Text Solution

    |

  5. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  6. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  7. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  8. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  9. lim(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equa...

    Text Solution

    |

  10. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  11. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  12. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  13. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  14. lim(ntooo) sum(x=1)^(20)cos^(2n)(x-10) is equal to

    Text Solution

    |

  15. lim(xto-1) ((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/(x+1)^(2)) is...

    Text Solution

    |

  16. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  17. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  18. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  19. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  20. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |