Home
Class 12
MATHS
lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^...

`lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2))` is equal to

A

`f(x)f(y)`

B

`f(x)+f(y)`

C

`f(x)-f(y)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1}{x} \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Simplify the expression inside the cosine inverse We know that: \[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \begin{cases} 2 \tan^{-1}(x) & \text{if } x \geq 0 \\ -2 \tan^{-1}(x) & \text{if } x < 0 \end{cases} \] ### Step 2: Evaluate the left-hand limit as \( x \to 0^- \) For \( x < 0 \): \[ \lim_{x \to 0^-} \frac{1}{x} \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \lim_{x \to 0^-} \frac{1}{x} (-2 \tan^{-1}(x)) \] Using the fact that \( \tan^{-1}(x) \approx x \) as \( x \to 0 \): \[ \lim_{x \to 0^-} \frac{-2 \tan^{-1}(x)}{x} = \lim_{x \to 0^-} \frac{-2x}{x} = -2 \] ### Step 3: Evaluate the right-hand limit as \( x \to 0^+ \) For \( x \geq 0 \): \[ \lim_{x \to 0^+} \frac{1}{x} \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \lim_{x \to 0^+} \frac{1}{x} (2 \tan^{-1}(x)) \] Again, using \( \tan^{-1}(x) \approx x \) as \( x \to 0 \): \[ \lim_{x \to 0^+} \frac{2 \tan^{-1}(x)}{x} = \lim_{x \to 0^+} \frac{2x}{x} = 2 \] ### Step 4: Compare the left-hand limit and right-hand limit From the calculations: - Left-hand limit as \( x \to 0^- \) is \( -2 \). - Right-hand limit as \( x \to 0^+ \) is \( 2 \). Since the left-hand limit and right-hand limit are not equal, we conclude that: \[ \lim_{x \to 0} \frac{1}{x} \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ does not exist.} \] ### Final Answer: The limit does not exist.

To solve the limit \( \lim_{x \to 0} \frac{1}{x} \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Simplify the expression inside the cosine inverse We know that: \[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \begin{cases} 2 \tan^{-1}(x) & \text{if } x \geq 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the following limits: (i)lim_(xto0) (1)/(x)sin^(-1)((2x)/(1+x^(2)))" "(ii)lim_(xto0) (1)/(x)sin^(-1)(3x-4x^(3))

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

Evaluate lim_(xto0^(+)) (1)/(x)cos^(-1)((sinx)/(x)) .

If lim_(xto0)(sin^(-1)x-tan^(-1)x)/(3x^3) is equal to L, then the value of (6L+1) is :

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

CENGAGE-LIMITS-Exercise (Single)
  1. lim(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equa...

    Text Solution

    |

  2. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  3. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  4. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  5. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  6. lim(ntooo) sum(x=1)^(20)cos^(2n)(x-10) is equal to

    Text Solution

    |

  7. lim(xto-1) ((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/(x+1)^(2)) is...

    Text Solution

    |

  8. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  9. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  10. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  11. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  12. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  13. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  14. The value of lim(xto1^(-)) (1-sqrt(x))/((cos^(-1)x)^(2)) is

    Text Solution

    |

  15. lim(xto pi//2) (sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  16. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  17. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  18. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  19. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  20. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |