Home
Class 12
MATHS
lim(xto pi//2) (sin(xcosx))/(cos(xsinx))...

`lim_(xto pi//2) (sin(xcosx))/(cos(xsinx))` is equal to

A

`a=3" and "b=9//2`

B

`a=3" and "b=9//2`

C

`a=-3" and "b=-9//2`

D

`a=3" and "b=-9//2`

Text Solution

Verified by Experts

The correct Answer is:
B

`L=underset(xto pi//2)lim(sin(xcosx))/(sin((pi)/(2)-xsinx))`
`L=underset(xto (pi)/(2))lim(sin(xcosx))/((xcosx))(((pi)/(2)-xsinx))/(sin((pi)/(2)-xsinx))(xcosx)/(((pi)/(2)-xsinx))`
`=1xx1underset(xto pi//2)lim(xcosx)/(((pi)/(2)-xsinx))`
Put `x=pi//2+h." Then "`
`L=underset(hto0)lim(((pi)/(2)+h)cos((pi)/(2)+h))/((pi)/(2)-((pi)/(2)+h)sin((pi)/(2)+h))`
`=underset(hto0)lim(-((pi)/(2)+h)sin h)/((pi)/(2)(1-cos h)-hcos h)`
`=underset(hto0)lim(-((pi)/(2)+h)((sin h)/(h)))/((pi)/(2)((1-cos h))/(h)-cos h)`(Divide `N^(r)` and `D^(r)` by `h`)
`=(-((pi)/(2)+0)1)/(0-1)=(pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

int(xsinx+cosx)/(xcosx)dx is equal to

lim_(xto pi//3) (2sin(x-pi//3))/(1-2cosx) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(xto(pi)) (1-sin(x/2))/(cosx/2(cosx/4-sinx/4))

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

int(xcosx)/(xsinx+cosx)dx=

lim_(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

lim_(xto0)(sin(picos^(2)x))/(x^(2)) is equal to

CENGAGE-LIMITS-Exercise (Single)
  1. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  2. The value of lim(xto1^(-)) (1-sqrt(x))/((cos^(-1)x)^(2)) is

    Text Solution

    |

  3. lim(xto pi//2) (sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  4. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  5. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  6. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  7. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  8. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  9. lim(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x))) is equal to

    Text Solution

    |

  10. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  11. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  12. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  13. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  14. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  15. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  16. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  17. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  18. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  19. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  20. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |