Home
Class 12
MATHS
lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (wh...

`lim_(xto0) [(1-e^(x))(sinx)/(|x|)]` is (where `[.]` represents the greatest integer function )

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - e^x) \sin x}{|x|} \) and find the greatest integer function of the result, we will evaluate the left-hand limit and the right-hand limit separately. ### Step 1: Define the limit We need to evaluate the limit as \( x \) approaches 0. We will consider two cases: when \( x \) approaches 0 from the left (negative) and from the right (positive). ### Step 2: Evaluate the left-hand limit For \( x < 0 \): - The modulus function \( |x| = -x \). - Thus, we rewrite the limit: \[ \lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{|x|} = \lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{-x} \] ### Step 3: Simplify the left-hand limit Now, we can evaluate the limit: \[ \lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{-x} = -\lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{x} \] Using the fact that \( \sin x \approx x \) as \( x \to 0 \), we can substitute: \[ \lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{x} = \lim_{x \to 0^-} (1 - e^x) \cdot \frac{\sin x}{x} \] As \( x \to 0 \), \( \frac{\sin x}{x} \to 1 \). ### Step 4: Evaluate \( 1 - e^x \) As \( x \to 0^- \), \( e^x \to 1 \), so: \[ 1 - e^x \to 1 - 1 = 0 \] Thus, we have: \[ \lim_{x \to 0^-} (1 - e^x) \cdot 1 = 0 \] ### Step 5: Evaluate the right-hand limit For \( x > 0 \): - The modulus function \( |x| = x \). - Thus, we rewrite the limit: \[ \lim_{x \to 0^+} \frac{(1 - e^x) \sin x}{|x|} = \lim_{x \to 0^+} \frac{(1 - e^x) \sin x}{x} \] ### Step 6: Simplify the right-hand limit Using the same reasoning as before: \[ \lim_{x \to 0^+} \frac{(1 - e^x) \sin x}{x} = (1 - e^0) \cdot 1 = 0 \] ### Step 7: Combine the results Both the left-hand limit and the right-hand limit are equal to 0: \[ \lim_{x \to 0^-} \frac{(1 - e^x) \sin x}{|x|} = 0 \] \[ \lim_{x \to 0^+} \frac{(1 - e^x) \sin x}{|x|} = 0 \] ### Step 8: Final limit Thus, we conclude: \[ \lim_{x \to 0} \frac{(1 - e^x) \sin x}{|x|} = 0 \] ### Step 9: Apply the greatest integer function Now we apply the greatest integer function: \[ \lfloor 0 \rfloor = 0 \] ### Final Answer The final answer is: \[ \boxed{0} \]

To solve the limit \( \lim_{x \to 0} \frac{(1 - e^x) \sin x}{|x|} \) and find the greatest integer function of the result, we will evaluate the left-hand limit and the right-hand limit separately. ### Step 1: Define the limit We need to evaluate the limit as \( x \) approaches 0. We will consider two cases: when \( x \) approaches 0 from the left (negative) and from the right (positive). ### Step 2: Evaluate the left-hand limit For \( x < 0 \): - The modulus function \( |x| = -x \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

To evaluate lim_(xtoa)[f(x)] , we must analyse the f(x) in right hand neighbourhood as well as in left hand neighbourhood of x=a . E.g. In case of continuous function, we may come across followign cases. If f(a) is an integer, the limit will exist in Case III and Case IV but not in Case I and Case II. lim_(xto0)[(1-e^(x)).(sinx)/(|x|)] (where [.] denotes the greatest integer function) equals

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

underset( x rarr 0 ) ("lim") [ ( 1-e^(x)) ( sin x )/( |x|)] is ( where [ **] denotes greatest integer function )

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

CENGAGE-LIMITS-Exercise (Single)
  1. The value of lim(xto1^(-)) (1-sqrt(x))/((cos^(-1)x)^(2)) is

    Text Solution

    |

  2. lim(xto pi//2) (sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  3. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  4. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  5. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  6. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  7. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  8. lim(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x))) is equal to

    Text Solution

    |

  9. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  10. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  11. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  12. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  13. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  14. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  15. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  16. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  17. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  18. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  19. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  20. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |