Home
Class 12
MATHS
Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx)...

Evaluate `lim_(xto0) (x(e^(x)-1))/(1-cosx)` is equal to

A

`e`

B

`(1)/(e)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we first substitute \(x = 0\) directly into the expression. 1. **Direct Substitution**: \[ \frac{0(e^0 - 1)}{1 - \cos(0)} = \frac{0(1 - 1)}{1 - 1} = \frac{0}{0}. \] This results in the indeterminate form \( \frac{0}{0} \). **Hint**: When you encounter the \( \frac{0}{0} \) form, consider using L'Hôpital's Rule. 2. **Applying L'Hôpital's Rule**: According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. - **Numerator**: \[ \frac{d}{dx}[x(e^x - 1)] = e^x - 1 + xe^x. \] - **Denominator**: \[ \frac{d}{dx}[1 - \cos x] = \sin x. \] Now we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x - 1 + xe^x}{\sin x}. \] **Hint**: After differentiating, check if substituting \(x = 0\) again gives an indeterminate form. 3. **Substituting Again**: Substitute \(x = 0\) into the new limit: \[ \frac{e^0 - 1 + 0 \cdot e^0}{\sin(0)} = \frac{1 - 1 + 0}{0} = \frac{0}{0}. \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. 4. **Applying L'Hôpital's Rule Again**: Differentiate the numerator and denominator again: - **Numerator**: \[ \frac{d}{dx}[e^x - 1 + xe^x] = e^x + e^x + xe^x = 2e^x + xe^x. \] - **Denominator**: \[ \frac{d}{dx}[\sin x] = \cos x. \] Now we have: \[ \lim_{x \to 0} \frac{2e^x + xe^x}{\cos x}. \] **Hint**: Substitute \(x = 0\) again to see if we can find the limit. 5. **Final Substitution**: Substitute \(x = 0\): \[ \frac{2e^0 + 0 \cdot e^0}{\cos(0)} = \frac{2 \cdot 1 + 0}{1} = \frac{2}{1} = 2. \] Thus, the limit is \[ \boxed{2}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we first substitute \(x = 0\) directly into the expression. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate : lim_(x to 0)(e^(x)-1)/sqrt(1-cosx) .

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

Evaluate lim_(xto0) (cosx)^(cotx).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

CENGAGE-LIMITS-Exercise (Single)
  1. lim(xto pi//2) (sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  2. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  3. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  4. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  5. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  6. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  7. lim(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x))) is equal to

    Text Solution

    |

  8. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  9. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  10. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  11. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  12. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  13. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  14. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  15. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  16. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  17. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  18. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  19. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  20. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |