Home
Class 12
MATHS
The value of lim(xtooo) ((2^(x^(n)))e^((...

The value of `lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n))` (where `n in N`) is

A

`e`

B

`e^(2)`

C

`e^(-1)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`L=underset(xtooo)lim((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n))=underset(xtooo)lim((3)^((x^(n))/(e^(x)))(((2)/(3))^((x^(n))/(e^(x)))-1))/(x^(n))`
Now, `underset(xtooo)lim(x^(n))/(e^(x))=underset(xtooo)lim(n!)/(e^(x))=0`
(Differentiating numerator and denominator `n` times for L'Hospital's rule)
Hence, `L=underset(xtooo)lim(3)^((x^(n))/(e^(x)))underset(xtooo)lim((((2)/(3))^((x^(n))/(e^(x)))-1))/((x^(n))/(e^(x)))underset(xtooo)lim(1)/(e^(x))`
`=1xxlog(2//3)xx0=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)((2^(x^(n)))^((1)/(e^(x)))-(3^(x^(n)))^((1)/(e^(x))))/(x^(n))

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a)logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(x rarr oo)((2^(x^(n)))^(e^((1)/(T)))-(3^(x^(n)))^((1)/(e^(bar(T)))))/(x^(n))

The value of lim_(x rarr oo)(x^(n))/(e^(x))

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(x rarr0)((e^(1))/(x))-(1+nx+(n^(2))/(2)x^(2))/(x^(3))(n>0) is

lim_(x rarr0)((1^(x)+2^(x)+3^(x)+...+n^(x))/(n))^((1)/(x))

CENGAGE-LIMITS-Exercise (Single)
  1. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  2. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  3. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  4. lim(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x))) is equal to

    Text Solution

    |

  5. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  6. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  7. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  8. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  9. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  10. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  11. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  12. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  13. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  14. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  15. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  16. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  17. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  18. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  19. lim(ntooo) {((n)/(n+1))^(a)+"sin"(1)/(n)}^(n) (where alphainQ) is equa...

    Text Solution

    |

  20. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |