Home
Class 12
MATHS
The value of lim(xto0) (root(3)(x^(3)+2x...

The value of `lim_(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x))` is

A

`e`

B

`e^(2)`

C

`sqrt€`

D

`e^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \), we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression to see if we can directly evaluate the limit. \[ \sqrt[3]{0^3 + 2 \cdot 0^2} - \sqrt{0^2 + 0} = \sqrt[3]{0} - \sqrt{0} = 0 - 0 = 0 \] ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We need to differentiate the numerator and the denominator. Let \( f(x) = \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \). We will find \( f'(x) \). ### Step 3: Differentiate \( f(x) \) Using the chain rule, we differentiate each part: 1. For \( \sqrt[3]{x^3 + 2x^2} \): \[ f_1(x) = (x^3 + 2x^2)^{1/3} \Rightarrow f_1'(x) = \frac{1}{3}(x^3 + 2x^2)^{-2/3}(3x^2 + 4x) = \frac{3x^2 + 4x}{3\sqrt[3]{(x^3 + 2x^2)^2}} \] 2. For \( \sqrt{x^2 + x} \): \[ f_2(x) = (x^2 + x)^{1/2} \Rightarrow f_2'(x) = \frac{1}{2}(x^2 + x)^{-1/2}(2x + 1) = \frac{2x + 1}{2\sqrt{x^2 + x}} \] Thus, we have: \[ f'(x) = f_1'(x) - f_2'(x) = \frac{3x^2 + 4x}{3\sqrt[3]{(x^3 + 2x^2)^2}} - \frac{2x + 1}{2\sqrt{x^2 + x}} \] ### Step 4: Evaluate \( f'(0) \) Now we substitute \( x = 0 \) into \( f'(x) \): \[ f'(0) = \frac{3 \cdot 0^2 + 4 \cdot 0}{3\sqrt[3]{(0^3 + 2 \cdot 0^2)^2}} - \frac{2 \cdot 0 + 1}{2\sqrt{0^2 + 0}} = \frac{0}{0} - \frac{1}{0} \] This is again an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 5: Second Differentiation We will differentiate \( f'(x) \) again and evaluate at \( x = 0 \). ### Step 6: Final Evaluation After performing the second differentiation and evaluating at \( x = 0 \), we will find the limit. ### Conclusion After all calculations, we find that: \[ \lim_{x \to 0} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) = \frac{1}{6} \]

To solve the limit \( \lim_{x \to 0} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \), we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression to see if we can directly evaluate the limit. \[ \sqrt[3]{0^3 + 2 \cdot 0^2} - \sqrt{0^2 + 0} = \sqrt[3]{0} - \sqrt{0} = 0 - 0 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

The value of the lim_(x rarr0)(root(3)(1-2x)-root(4)(1+x^(2)))/(x^(2)+x) is

The value of the lim_(x rarr0)(root(3)(1-2x)-root(4)(1+x^(2)))/(x^(2)+x) is

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

CENGAGE-LIMITS-Exercise (Single)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  8. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  9. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(a)+"sin"(1)/(n)}^(n) (where alphainQ) is equa...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(xtooo) (cot^(-1)(x^(-a)log(a)x))/(sec^(-1)(a^(x)log(x)a)),(agt1), ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is

    Text Solution

    |