Home
Class 12
MATHS
lim(xto0) (cos(tanx)-cosx)/(x^(4)) is eq...

`lim_(xto0) (cos(tanx)-cosx)/(x^(4))` is equal to

A

`f(1+0)=-1,f(1-0)=0`

B

`f(1+0)=0=f(1-0)`

C

`underset(xto1)limf(x)` exists

D

`underset(xto1)f(x)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
B

`cos(tanx)-cosx=2sin((x+tanx)/(2))sin((x-tanx)/(2))`
or `underset(xto0)lim(cos(tanx)-cosx)/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4)((x+tanx)/(2))((x-tanx)/(2)))((x^(2)-tan^(2)x)/(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-tan^(2)x)/(x^(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-(x+(x^(3))/(3)+(2)/(15)x^(5)+...)^(2))/(x^(4))`
`=(1)/(2)underset(xto0)lim(1)/(x^(2))(1-(1+(x^(2))/(3)+(2)/(15)x^(4)+...)^(2))=-(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto0)(sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

What is lim_(xto0) (2(1-cosx))/(x^(2) equal to?

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

CENGAGE-LIMITS-Exercise (Single)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. lim(xto0) (cos(tanx)-cosx)/(x^(4)) is equal to

    Text Solution

    |

  8. If lim(xto0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  9. If lim(xto0) (x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(a)+"sin"(1)/(n)}^(n) (where alphainQ) is equa...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(xtooo) (cot^(-1)(x^(-a)log(a)x))/(sec^(-1)(a^(x)log(x)a)),(agt1), ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is

    Text Solution

    |