Home
Class 12
MATHS
Evaluate the following integrals using l...

Evaluate the following integrals using limit of sum.
`int_(a)^(b)x^(3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{a}^{b} x^3 \, dx \) using the limit of sums, we can follow these steps: ### Step 1: Define the interval and partition it We start by partitioning the interval \([a, b]\) into \(n\) equal subintervals. The width of each subinterval is given by: \[ h = \frac{b - a}{n} \] The points in the partition can be defined as: \[ x_r = a + rh \quad \text{for } r = 0, 1, 2, \ldots, n \] ### Step 2: Write the Riemann sum The Riemann sum for the function \(f(x) = x^3\) over the interval \([a, b]\) is: \[ S_n = \sum_{r=0}^{n-1} f(x_r) \cdot h = \sum_{r=0}^{n-1} (a + rh)^3 \cdot h \] Substituting \(f(x)\): \[ S_n = \sum_{r=0}^{n-1} (a + rh)^3 \cdot h \] ### Step 3: Expand the function We expand \((a + rh)^3\): \[ (a + rh)^3 = a^3 + 3a^2(rh) + 3a(rh)^2 + (rh)^3 \] Thus, we can rewrite the sum: \[ S_n = \sum_{r=0}^{n-1} \left( a^3 + 3a^2(rh) + 3a(rh)^2 + (rh)^3 \right) \cdot h \] ### Step 4: Distribute \(h\) and separate the sums Distributing \(h\) gives: \[ S_n = \sum_{r=0}^{n-1} \left( a^3h + 3a^2rh^2 + 3ar^2h^3 + r^3h^4 \right) \] This can be separated into individual sums: \[ S_n = a^3h \sum_{r=0}^{n-1} 1 + 3a^2h^2 \sum_{r=0}^{n-1} r + 3ah^3 \sum_{r=0}^{n-1} r^2 + h^4 \sum_{r=0}^{n-1} r^3 \] ### Step 5: Evaluate the sums Using the formulas for the sums: - \( \sum_{r=0}^{n-1} 1 = n \) - \( \sum_{r=0}^{n-1} r = \frac{(n-1)n}{2} \) - \( \sum_{r=0}^{n-1} r^2 = \frac{(n-1)n(2n-1)}{6} \) - \( \sum_{r=0}^{n-1} r^3 = \left( \frac{(n-1)n}{2} \right)^2 \) Substituting these into \(S_n\): \[ S_n = a^3h n + 3a^2h^2 \cdot \frac{(n-1)n}{2} + 3ah^3 \cdot \frac{(n-1)n(2n-1)}{6} + h^4 \cdot \left( \frac{(n-1)n}{2} \right)^2 \] ### Step 6: Factor out \(h\) and take the limit as \(n \to \infty\) Now, we can factor out \(h\) from each term and substitute \(h = \frac{b-a}{n}\): \[ S_n = \left( \frac{b-a}{n} \right) \left( a^3 n + \frac{3a^2(b-a)(n-1)}{2} + \frac{3a(b-a)^2(n-1)(2n-1)}{6} + \frac{(b-a)^3(n-1)^2}{4} \right) \] Taking the limit as \(n \to \infty\): \[ \lim_{n \to \infty} S_n = \int_{a}^{b} x^3 \, dx = \frac{(b^4 - a^4)}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_{a}^{b} x^3 \, dx = \frac{b^4 - a^4}{4} \]

To evaluate the integral \( \int_{a}^{b} x^3 \, dx \) using the limit of sums, we can follow these steps: ### Step 1: Define the interval and partition it We start by partitioning the interval \([a, b]\) into \(n\) equal subintervals. The width of each subinterval is given by: \[ h = \frac{b - a}{n} \] The points in the partition can be defined as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals using limit of sum. int_(a)^(b)cos x dx

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sum: int_(-1)^1(x+3)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)e^(2-3x)dx

Evaluate the following definite integrals as limit of sums.int_(a)^(b)xdx

Evaluate the following integrals as limit of sum: int_a^b e^x dx

Evaluate the following integrals as limit of sums: int_(1)^(3)(3x^(2)-2x+4)dx

Evaluate the following integrals as limit of sums : (i) int_(0)^(5)(x+1)dx (ii) int_(1)^(3)(2x+3)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)(3x^(2)+2x+1)dx

Evaluate the following integrals as limit of sum: int_0^(3.)(2x^2+3x+5)dx