Home
Class 12
MATHS
If f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)...

If `f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)=f(x-1)+f(x+1),` find the value of `int_(-3)^5g(x)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
2


Graph of `y=f(x-1)`
`int_(-3)^(5)g(x)dx=int_(-3)^(5)f(x-1)dx+int_(-3)^(5)f(x-1)dx`
`=` Area of triangle in the graph `y=f(x-1)`
`+` Area of triangle in the graph `y=f(x+1)`
`=2 1/2 (2)(1)=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)={[1-|x|,|x| 1' find the value of int_(-3)^(5)g(x)dx

Let f(x)={1-|x|,|x|<=1 and 0,|x|<1 and g(x)=f(x-)+f(x+1) ,for all x in R .Then,the value of int_(-3)^(3)g(x)dx is

If f(x)=min(|x|,1-|x|,(1)/(4))AA x in R, then find the value of int_(-1)^(1)f(x)dx

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If f(x) = x^5 - 1/x^5 then find the value of f(x) + f(1/x)

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x ) = x^3 - 1/x^3 , then find the value of f(x) + f( 1/x )

If 2f(x)+f(-x)=(1)/(x)sin(x-(1)/(x)) then the value of int_((1)/(e))^(e)f(x)dx is