Home
Class 12
MATHS
Evaluate int(1)^(e^(6))[(logx)/3]dx, whe...

Evaluate `int_(1)^(e^(6))[(logx)/3]dx,` where [.] denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`(e^(6)-e^(3))`

When `1ltxlte^(3),[(logx)/3]=0`
and when `e^(3)ltxlte^(6),[(logx)/3]=1`
`:. int_(1)^(e^(6))[(logx)/3]dx=int_(1)^(e^(3))[(logx)/3]dx+int_(e^(3))^(e^(6))[(logx)/3]dx`
`=int_(1)^(e^(3)) 0dx+int_(e^(3))^(e^(6))1dx=(e^(6)-e^(3))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

Evaluate: int_(-5)^(5)x^(2)[x+(1)/(2)]dx (where [.] denotes the greatest integer function).

Evaluate: int[(log x)/(3)]dx, where [.] denotes the greatest integer function.

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.