Home
Class 12
MATHS
Prove that int0^x[cot^(-1)x]dx ,w h e r ...

Prove that `int_0^x[cot^(-1)x]dx ,w h e r e[dot]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`pi+cot1+cot2`

We have `int_(-pi//2)^(2pi)[cot^(-1)x]dx`
We have that `cot^(-1)xepsilon[0,pi]`
so `[cot^(-1)x]=0` for `cot^(-1)x epsilon(0,1)` or `xepsilon(cot1,oo)`
`[cot^(-1)x]=1` for `cot^(-1)xepsilon[1,2)` or `xepsilon(cot2, cot1]`
`[cot^(-1)x=2` for `cot^(-1)x epsilon[2,3)` or `x epsilon(cot3, cot2]`
`[cot^(-1)x]=3` for `cot^(-1)xepsilon[3,pi)` or `x epsilon(-oo,cot3]`
`:. int_(cot1)^(2pi) 0dx+int_(cot2)^(cot1) 1dx+int_(-pi//2)^(cot2) 2dx`
`=cot1-cot2+2cot2+pi`
`=cot1+cot2+pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-(pi)/(2))^(2 pi)[cot^(-1)x]dx, where [.] denotes the greatest integer function.

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

The value of the constant a gt 0 such that int_(0)^(a) [tan^(-1)sqrt(x)]dx=int_(0)^(a) [cot^(-1)sqrt(x)]dx , where[.] denotes the greatest integer function, is

Evaluate: int_(-100)^(100)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of a(>0) such that int_(0)^(a)[tan^(-1)sqrt(x)]dx=int_(0)^(a)[cot^(-1)sqrt(x)]dx where [1 denotes the greatest integer function, is