Home
Class 12
MATHS
Evaluate: int0^oo[2e^(-e)]dx ,w h e r e[...

Evaluate: `int_0^oo[2e^(-e)]dx ,w h e r e[x]` represents greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
In2

`f(x)=2e^(-x)` is decreasing for `x epsilon [0,oo)`.
Also, when `x=0, 2e^(-x)=2`,
and when `x to oo,2e^(-x)to0`.
Thus `[2e^(-x)]` is discontinuous when `2e^(-x)=1` or `x=log2`
Also for `xgtIn2, [2e^(-x)]=0`
and for `0ltxltlog2, [2e^(-x)]=1`
`:.int_(0)^(oo) [2e^(-x)]dx=int_(0)^(In2)[2e^(-x)]dx+int_(In2)^(oo) [2e^(-x)]dx`
`=int_(0)^(In2) 1dx+int_(In2)^(0)0dx=(x)_(0)^(In2)=In2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(oo)[2e^(-x)]dx, where [x] represents greatest integer function.

Evaluate: int_(-100)^(100)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate :int_(0)^(oo)e^(-x)dx

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

The value of int_(0)^(oo)[2e^(-x)]dx (where,[^(*)] denotes the greatest integer function of (x) is equal to

Evaluate int_(0)^(2)e^(x)dx

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to S

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx