Home
Class 12
MATHS
The value of the integral int3^6 sqrtx/(...

The value of the integral `int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx` is

Text Solution

Verified by Experts

The correct Answer is:
`3//2`

`I=int_(3)^(6) (sqrt(x))/(sqrt(9-x)+sqrt(x)) dx`………….1
`:. I=int_(3)^(6)(sqrt(9-x))/(sqrt(x)+sqrt(9-x))dx`…………2
Adding 1 and 2.
`2I=int_(3)^(6)1.dx=[x]_(3)^(6)=6-3=3`
Hence `I=3/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

int1/(sqrtx(1-sqrtx)dx=

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

The value of int_(2)^(3) (sqrtx)/(sqrt(5-x)+sqrtx)dx is equal

The value of the integral int(x^(2)-4xsqrtx+6x-4sqrtx+1)/(x-2sqrtx+1)

(8) int(1/(sqrtx)-sqrtx)dx