Home
Class 12
MATHS
Find the value of int(0)^(1)root(3)(2x(3...

Find the value of `int_(0)^(1)root(3)(2x(3)-3x^(2)-x+1)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx \), we can use a symmetry property of definite integrals. Let's go through the steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx \] ### Step 2: Change of Variable Now, we will use the substitution \( x = 1 - t \). Therefore, \( dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = 1 \), \( t = 0 \) Thus, the integral becomes: \[ I = \int_{1}^{0} \sqrt[3]{2(1-t)^3 - 3(1-t)^2 - (1-t) + 1} (-dt) = \int_{0}^{1} \sqrt[3]{2(1-t)^3 - 3(1-t)^2 - (1-t) + 1} \, dt \] ### Step 3: Simplify the Expression Now we simplify the expression inside the cube root: \[ 2(1-t)^3 = 2(1 - 3t + 3t^2 - t^3) = 2 - 6t + 6t^2 - 2t^3 \] \[ -3(1-t)^2 = -3(1 - 2t + t^2) = -3 + 6t - 3t^2 \] \[ -(1-t) = -1 + t \] \[ +1 = +1 \] Combining these: \[ 2 - 6t + 6t^2 - 2t^3 - 3 + 6t - 3t^2 - 1 + t + 1 = -2t^3 + 3t^2 + t - 1 \] Thus, we have: \[ I = \int_{0}^{1} \sqrt[3]{-2t^3 + 3t^2 + t - 1} \, dt \] ### Step 4: Combine the Two Integrals Now we can express \( I \) as: \[ I = \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx + \int_{0}^{1} \sqrt[3]{-2x^3 + 3x^2 + x - 1} \, dx \] This gives: \[ 2I = \int_{0}^{1} \left( \sqrt[3]{2x^3 - 3x^2 - x + 1} + \sqrt[3]{-2x^3 + 3x^2 + x - 1} \right) \, dx \] ### Step 5: Evaluate the Integral Notice that the two terms inside the integral are negatives of each other, hence: \[ \sqrt[3]{2x^3 - 3x^2 - x + 1} + \sqrt[3]{-2x^3 + 3x^2 + x - 1} = 0 \] Thus: \[ 2I = \int_{0}^{1} 0 \, dx = 0 \] ### Step 6: Conclusion Therefore, we conclude: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx = 0 \]

To solve the integral \( I = \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx \), we can use a symmetry property of definite integrals. Let's go through the steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{1} \sqrt[3]{2x^3 - 3x^2 - x + 1} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

" The value of the definite integral "1=int_(0)^(1)root(3)(2x^(3)-3x^(2)+3x-1)dx=

The value of the definite integral I=int_(0)^(1)root(3)(2x^(3)-3x^(2)+3x-1)dx=

int_(0)^(1)(dx)/((2x-3))

Find the value of int(dx)/(1+x+x^(2)+x^(3))

Evaluate: int_(0)^(1)(1)/(2x-3)dx

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

Evaluate : int_(0)^(1)(dx)/( 2x + 3 )

int_(0)^(1)(dx)/(3x+2)

int_(0)^(1)(x^(2))/(3-x^3)dx

Evaluate int_(0)^(1)e^(2-3x)dx