Home
Class 12
MATHS
Show that int0^pifx(sinx)dx=pi/2int0^pif...

Show that `int_0^pifx(sinx)dx=pi/2int_0^pif(sinx)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
NA

Let `I=int_(0)^(pi)xf(sinx)dx`……………1
`:.I=int_(0)^(pi)(pi-x)f{sinx(pi-x)}dx`
or `I=int_(0)^(pi)(pi-x)f(sinx)dx` ………….2
Thus, adding 1 and 2 we get
`2I=pi int_(0)^(pi)f(sinx)dx`
or `I=(pi)/2int_(0)^(pi)f(sinx)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

If int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx , then A is

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

int_(0)^(2pi)|sinx|dx=?

int_0^pi tanx/(sinx+tanx)dx

int_(0)^(2pi)(sinx+cosx)dx=

Evaluate int_0^pi x^2 sinx dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_0^(pi/2) cosx/(1+sinx)dx

Find int_0^(pi/2)dx/(1+sinx)