Home
Class 12
MATHS
The value of int-pi^pi cos^2x/[1+a^x].dx...

The value of `int_-pi^pi cos^2x/[1+a^x].dx`,a>0 is

Text Solution

Verified by Experts

The correct Answer is:
`pi//2`

Let `I=int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0` ………….. 1
`:.I=int_(-pi)^(pi)(cos^(2)x)/(1+a^(-x))dx` (Replacing `x` by `-x`)
or `I=int_(-pi)^(pi)(a^(x)cos^(2)x)/(1+a^(x))dx`…………….2
Adding 1 and 2 we get
`2I=4int_(0)^(pi//2)cos^(2)x dx`
`=2int_(0)^(pi//2)(1+cos2x)dx`
`=2[x+(sin2x)/2]_(0)^(pi//2)`
`-pi`
or `I=(pi)/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x)dx where agt 0, is

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(2))dx,a gt 0 , is

The value of int_(-pi)^( pi)(cos^(2)x)/(1+a^(x))*dx,a>0 is

int_0^pi (cos^2x)dx ,

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(2pi)cos^(99)x dx is

The value of int_(0)^(pi) |cos x|dx , is