Home
Class 12
MATHS
Find the value of int0^pi (x sinx)/ (1+c...

Find the value of `int_0^pi (x sinx)/ (1+cos^2x)\ dx`

Text Solution

Verified by Experts

The correct Answer is:
`pi^(2)//4`

Let `I=int_(0)^(pi)(xsinxdx)/(1+cos^(2)x)`…………..1
or `I=int_(0)^(pi)((pi-x)sinx dx)/(1+cos^(2)x)`…………2
Adding 1 and 2 we get
`2I=piint_(0)^(pi)(sinxdx)/(1+cos^(2)x)`
or `I=-(pi)/2 int_(1)^(-1)(dt)/(1+t^(2))=-(pi)/2[tan^(-1)t]_(1)^(-1)`
[Putting `cosx=t, -sinx dx=dt`]
`=-1/2[tan^(-1)(-1)-tan^(-1)]=pi^(2)//4`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_(0)^( pi)(x sin x)/(1+cos^(2)x)backslash dx

Find the value of int_0^(2pi) |sinx|dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

Evaluate int_0^pi x^2 sinx dx

Find the value of int_0^(pi/2)(sinx.cosx)/((a^2cos^2x+b^2sin^2x)^2)dx

Find the value of int_0^(2pi) (xsin^8 x)/(sin^8 x + cos^8 x)dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx