Home
Class 12
MATHS
Evaluate int(0)^(pi)(x dx)/(1+cos alpha ...

Evaluate `int_(0)^(pi)(x dx)/(1+cos alpha sin x)`,where `0lt alpha lt pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] where \(0 < \alpha < \pi\), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \(a = 0\) and \(b = \pi\), so we have: \[ I = \int_0^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin(\pi - x)} \] Since \(\sin(\pi - x) = \sin x\), we can rewrite the integral as: \[ I = \int_0^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x} \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_0^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x}\) 2. \(I = \int_0^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x}\) Adding these two equations gives: \[ 2I = \int_0^{\pi} \frac{x + (\pi - x) \, dx}{1 + \cos \alpha \sin x} \] This simplifies to: \[ 2I = \int_0^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x} \] ### Step 4: Solve for \(I\) Now we can solve for \(I\): \[ I = \frac{1}{2} \int_0^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x} \] ### Step 5: Evaluate the integral Now we need to evaluate the integral: \[ \int_0^{\pi} \frac{dx}{1 + \cos \alpha \sin x} \] To evaluate this integral, we can use the substitution \(t = \tan\left(\frac{x}{2}\right)\), which gives: \[ \sin x = \frac{2t}{1 + t^2}, \quad dx = \frac{2 \, dt}{1 + t^2} \] Changing the limits accordingly, when \(x = 0\), \(t = 0\) and when \(x = \pi\), \(t \to \infty\). Thus, we have: \[ \int_0^{\pi} \frac{dx}{1 + \cos \alpha \sin x} = \int_0^{\infty} \frac{2 \, dt}{(1 + t^2)(1 + \cos \alpha \frac{2t}{1 + t^2})} \] This integral can be simplified further, but we can use a known result for this type of integral: \[ \int_0^{\pi} \frac{dx}{1 + k \sin x} = \frac{\pi}{\sqrt{1 + k^2}} \quad \text{for } |k| < 1 \] In our case, \(k = \cos \alpha\), so: \[ \int_0^{\pi} \frac{dx}{1 + \cos \alpha \sin x} = \frac{\pi}{\sqrt{1 + \cos^2 \alpha}} \] ### Step 6: Substitute back to find \(I\) Now substituting this back into our expression for \(I\): \[ I = \frac{1}{2} \cdot \pi \cdot \frac{\pi}{\sqrt{1 + \cos^2 \alpha}} = \frac{\pi^2}{2\sqrt{1 + \cos^2 \alpha}} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^2}{2\sqrt{1 + \cos^2 \alpha}} \]

To evaluate the integral \[ I = \int_0^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] where \(0 < \alpha < \pi\), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^( pi)(x)/(1+sin alpha sin x)dx

The value of the integral int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi , is

int_(0)^( Evaluate: )(xdx)/(1+cos alpha sin x), where0

I= int_(0)^( pi)(x)/(1+sin x cos alpha)dx

int_(0)^( pi)(xdx)/(1+cos alpha*sin alpha)(0

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0