Home
Class 12
MATHS
Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx...

Evaluate `int_(0)^(npi+t)(|cosx|+|sinx|)dx,` where `n epsilonN` and `t epsilon[0,pi//2]`.

Text Solution

Verified by Experts

The correct Answer is:
`4n+sint-cost+1`

Let `I=int_(0)^(npi+1)(|cosx|+|sinx|)dx`
`=int_(0)^(npi)(|cosx|+|sinx|)dx+int_(npi)^(npi+1)(|cosx|+|sinx|)dx`
`=2nint_(0)^(pi//2) (|cosx|+|sinx|)dx+int_(0)^(1)(|cosx|+|sinx|)dx`
`=2n int_(0)^(pi//2) (cosx+sinx)dx+int_(0)^(1)(cosx+sinx)dx`
`=4n+sint-cost+1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(2pi)|cosx|dx

int_(0)^( pi/2)(cosx/(2+sinx))dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_(0)^(n pi+t)(|cos x|+|sin x|)dx, where t in[0,f[(pi)/(2))

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

int_(0)^(pi//6)(cosx)/((3+4sinx))dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx