Home
Class 12
MATHS
Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l...

`Ifint_0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint_(b-1)^b(e^(-t)dt)/(t-b-1)`

Text Solution

Verified by Experts

The correct Answer is:
`-ae^(-b)`

In `int_(b-1)^(b)(e^(-t)dt)/(t-b-1)` but `t-b-1=-y-1`. So `dt=-dy`
`:.int_(b-1)^(b)(e^(-t)dt)/(t-b-1)=int_(1)^(0)(e^(y-b))/(-y-1)(-dy)`
`=-e^(-b)int_(0)^(1)(e^(y))/(y+1)dy=-ae^(-b)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

d/(dt) (1/t)=

Let A=int_(0)^(1)(e^(t))/(t+1)dt, then the value of (int_(0)^(1)te^(t^^2))/(t^(2)+1)dtA^(2)(b)(1)/(2)A(c)2A(d)(1)/(2)A^(2)

int_(1)^(a)(ln t)/(t)dt

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is