Home
Class 12
MATHS
Find the value of : int0^(10)e^(2x-[2x])...

Find the value of : `int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot]` denotes the greatest integer function).

Text Solution

Verified by Experts

The correct Answer is:
`10(e-1)`

`int_(0)^(10)e^(2x-{2x})d(x-[x])`
`=int_(0)^(10)e^([2x])dx`
`=20 int_(0)^(1//2)e^({2x})dx` ( `{2x}` has period `1//2`)
`=20 int_(0)^(1//2) e^(2x)dx`, [for `x epsilon(0,1//2),{2x}=2x`]
`=10(e^(2x))_(0)^(1//2)`
`=10(e-1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of : int_(0)^(10)e^(2x-[2x])d(x-[x]) where [.] denotes the greatest integer function).

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to