Home
Class 12
MATHS
If IK=int1^e(1nx)^kdx(k in I^+)dx(k in ...

If `I_K=int_1^e(1nx)^kdx(k in I^+)dx(k in I^+),` then find the value of `I_4dot`

Text Solution

Verified by Experts

The correct Answer is:
`9e-24`

`I_(k)=int_(1)^(e)(Inx)^(k)dx=|x(Inx)^(k)|_(1)^(e)-k int_(1)^(e)(Inx)^(k-1)dx`
or `I_(k)=e-kI_(k-1)`
or `I_(4)=e-4I_(3)`
`=e-4(e-3)(e-3)(e-2I_(1))`
`=9e-24 ( :' I_(1)=1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(K)=int_(1)^(e)(ln x)^(k)dx(k in I^(+))dx(k in I^(+)) then find the value of I_(4)

If int_(0)^(1)(e^(-x)dx)/(1+e^(x))=log_(e)(1+e)+k, then find the value of k .

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

I=int_( of k?)^(2 pi)sin^(4)xdx=k int_(0)^( pi/2)cos^(4)xdx find value

For a positive integer n, let I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] (where [.] denotes greatest integer function) .