Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AA...

If `f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1`, then prove that `f(x)=f(1/x)`.

Text Solution

Verified by Experts

The correct Answer is:
NA

Given `f(x)=int_(1)(x)(logt)/(1+t+t^(2))dt`
or `f(1/x)=int_(1)^(1//x)(logt)/(1+t+t(2))dt`
Let `y=1/t` or `dy=(dt)/(t^(2))`
`:. f(1/x)=int_(1)^(x)("log"1/y)/(1+1/y+1/(y^(2)))(-1/(y^(2))dy)`
`=int_(1)^(x)(logy)/(1+y+y^(2))dy=f(x)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(log t)/(1+t+t^(2))dx AA x<=1, then prove that f(x)f((1)/(x))

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

If f(x)= int_(-1)^(x)|t|dt ,x>=-1 then