Home
Class 12
MATHS
f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+...

`f(x)=int_1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof` `f(e^2)-f(1/(e^2))`

Text Solution

Verified by Experts

The correct Answer is:
`pi`

`f(x)=int_(1)^(x)(tan^(-1)(t))/t dt`
`:.f(1/x)=int_(1)^(1//x)(tan^(-1)(t))/tdt`
Put `=t=1//u`
`:.dt=-(du)/(u^(2))`
`:.f(1//x)=int_(1)^(x)("tan"^(-1)(1/u))/(1/u)(-1/(u^(2)))du`
`=-int_(1)^(x)("tan"^(-1)(1/u))/u du`
`=-int_(1)^(x)("cot"^(-1)(u))/u du`
`=-int_(1)^(x)(cot^(-1)(t))/t dt`
Now` f(x)-f(1//x)=int_(1)^(x)(tan^(-1)t+cot^(-1)t)/t dt`
`=int_(1)^(x) (pi)/2xx1/t dt`
`=(pi)/2 log (x)`
`:. f(e^(2))-f(1//e^(2))=(pi)/2log_(e)e^(2)=pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,x in R^(+), then find the value of f(e^(2))-f((1)/(e^(2)))

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

Let f(x)=int_(1)^(x)(e^(t))/(t)dt,x in R^(+). Then complete set of valuesof x for which f(x)<=In x is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)