Home
Class 12
MATHS
Evaluate: int(sqrt(2))^(sqrt(2)+1)((x^2-...

Evaluate: `int_(sqrt(2))^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx`

Text Solution

Verified by Experts

The correct Answer is:
`0`

`I=int_(sqrt(2)-1)^(sqrt(2)+1)((x^(2)-1))/((x^(2)+1)^(2))dx=int_(1//a)^(a)((x^(2)-1))/((x^(2)+1)^(2))dx`, where `a=sqrt(2)+1`
Put `x=1/t`. So `dx=-1/(t^(2))dt`
`:.I=int_(a)^(1//a)(1/(t^(2))-1)/((1/(t^(2))+1)^(2))-(-1/(t^(2)))dt`
`=-int_(a)^(1//a)((1-t^(2))t^(4))/(t^(4)(1+t^(2))^(2))dt`
`=-int_(a)^(1//a)((1-t^(2)))/((1+t^(2))^(2))dt`
`=int_(a)^(1//a)(t^(2)-1)/((t^(2)+1)^(2))dt`
`=-int_(1//a)^(a)(t^(2)-1)/((t^(2)+1)^(2))dt=-1`
or `2I=0`
or `I=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((1+sqrt(x))^(2))/(sqrt(x))dx

Evaluate: int_-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x)/(1-x^2)))/(e^x+1)dx

Evaluate int dx/(sqrt(2x+1)

Evaluate: int(x^(2))/((x-1)sqrt(x+2))dx

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate: int(sqrt(1+x^(2)))/(1-x^(2))dx

Evaluate: int(1+x^(2))/(sqrt(1-x^(2)))dx

Evaluate: int(1)/(sqrt((2-x)^(2)+1))dx

Evaluate :int(x^(2))/(sqrt(1-x^(2)))dx

Evaluate: int(x^(2))/(sqrt(1-x^(2)))dx