Home
Class 12
MATHS
Find the value of int(1/2)^(2)e^(|x-1/x|...

Find the value of `int_(1/2)^(2)e^(|x-1/x|)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`esqrt(e)-1`

Let `I=int_(1/2)^(2)e^(|x-1/x|)dx`…………….1
Put `x=1/t`,
`:. I=-int_(0)^(1/2)e^(|t- 1/t|)((dt)/(t^(2)))=int_(1/2)^(2)e^(|x-1/x|)(dx)/(x^(2))`……………2
Adding 1 and 2 we get
`2I=int_(1/2)^(2)e^(|x - 1/x|),(1+1/(x^(2)))dx`
`=int_(1/2)^(1)e^(-(x-1/x)),(1+1/(x^(2)))dx+int_(1)^(2)e^((x-1/x)),(1+1/(x^(2)))dx`
`=[-e^(-(x-1/x))]_(1//2)^(1)+[e^((x-1/x))]_(1)^(2)`
`=-1+e^(3//2)+e^(3//2)-1`
`=2(esqrt(e)-1)`
`impliesI=esqrt(e)-1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

Find the value of int_(-1)^(2)|x sin pi x|dx

Find the value of int(x^(2)+(1)/(x^(2)))dx

Evaluate :int(dx)/(sqrt((x-1)(2-x))) by the substitution x=1+sin^(2)theta .Hence,find the value of int_(1)^(2)(dx)/(sqrt((x-1)(2-x)))

Evaluate : int_(1)^(2)(1)/(x^(2))e^(1/x)dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

If 2f(x)+f(-x)=(1)/(x)sin(x-(1)/(x)) then the value of int_((1)/(e))^(e)f(x)dx is