Home
Class 12
MATHS
If I(n)=int(0)^(pi)x^(n)sinxdx, then fin...

If `I_(n)=int_(0)^(pi)x^(n)sinxdx`, then find the value of `I_(5)+20I_(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`pi^(5)`

`I_(m)=int_(0)^(pi)x^(m) sin x dx`
`=[-x^(m)cosx]_(0)^(pi)+n int_(0)^(pi)x^(n-1)cos x dx`
`=pi^(n)+n[x^(n-1)sinx ]_(0)^(pi)-n(n-1)int_(0)^(pi)x^(n-2)sin x dx`
`implies I_(m)=pi^(n)+n.0-n(n-1)I_(n-2)`
Put `n=5`
`I_(5)=pi^(5)-20I_(3)`
`I_(5)+20I_(3)=pi^(5)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is