Home
Class 12
MATHS
If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, t...

If `L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt`, then prove that
`L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)`

Text Solution

Verified by Experts

The correct Answer is:
NA

`L(m,n)=int_(0)^(1)t^(m)(1+t)^(n)dx`
`=[(t^(m+1))/(m+1)(1+t)^(n)]_(0)^(1)-int_(0)^(1)n(1+t)^(n-1)(t^(m+1))/(m+1)dx`
`=[(t^(m+1))/(m+1)(1+t^(n))]_(0)^(1)-n/(m+1)int_(0)^(1)t^(m+1)(1+t)^(n-1)dx`
`(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If l_(m,n)=intx^(m)cosnxdx, then prove that l_(m,n)=(x^(m)sinnx)/(n)+(mx^(m-1)cosnx)/(n^(2))-(m(m-1))/(n^(2))l_(m-2,n)

If a=x^(m+n)y^(1),b-x^(n+l)y^(m) and c=x^(l+m)y^(n), prove that a^(m-n)b^(n-1)c^(1-m)=1

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)