Home
Class 12
MATHS
IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np ro...

`IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t` `(n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2`

Text Solution

Verified by Experts

The correct Answer is:
NA

`I_(n)=int_(0)^(1) x^(n)(tan^(-1)x)dx=int_(0)^(1)x^(n-1)(xtan^(-1)x)dx`
`=[x^(n-1)((x^(2))/2"tan"^(-1)x-(x^(2))/2+(tan^(-1)x)/2)]_(0)^(1)`
`=(n-1)int_(0)^(1)x^(n-2)((x^(2))/2"tan"^(-1)x-x/2+(tan^(-1)x)/2)dx`
`=(pi)/4-1/2-((n-1))/2 I_(n)+((n-1))/2int_(0)^(1)x^(n-1)dx-1/2(n-1)I_(n-2)`
or `((n+1))/2I_(n)=(pi)/4-1/2+1/2 1/(2n)-1/2(n-1)I_(n-2)`
or `(n+1)I_(n)+(n-1)I_(n-2)=-1/n+(pi)/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)

If v_n=int_0^1x^n tan^-1xdx , show that: (n+1)u_n+(n-1)u_(n-2)=pi/2-1/n

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_n=int_0^ooe^(-x)x^(n-1)log_exdx , then prove that I_(n+2)-(2n+1)I_(n+1)+n^2I_n=0

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=