Home
Class 12
MATHS
IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx ,...

`IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx ,` Then show that `I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N)` Hence, prove that `I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4w h e nbot hma n dna r ee v e n((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))`

Text Solution

Verified by Experts

The correct Answer is:
NA

`I_(m,n)=int_(0)^((pi)/2)sin^(m-1)x(sinx cos^(n)x)dx`
`=[-(sin^(m-1)x cos^(n+1)x)/(n+1)]_(0)^((pi)/2)`
`+int_(0)^((pi)/2)(cos^(n+1))/(n+1)(m-1)sin^(m-2)x cosx dx`
`=((m-1)/(n+1))int_(0)^((pi)/2)sin^(m-2)x cos^(n)x cos^(2)x dx`
`=((m-1)/(n+1))int_(0)^((pi)/2)(sin^(m-2)x cos^(n)x -sin^(m)x cos^(n)x)dx`
`=((m-1)/(n+1))I_(m-2,n)-((m-1)/(n+1))I_(m,n)`
or `(1+(m-1)/(n+1))I_(m,n)=((m-1)/(n+1))I_(m-2,n)`
r `I_(m,n)=((m-1)/(m+n))I_(m-2,n)`
`=((m-1)/(m+n))((m-3)/(m+n-2))((m-5)/(m+n-4))............I_(0,n)` or `I_(1,n)`
According as `m` is even or odd
`I_(0,n)=int_(0)^((pi)/2)cos^(n)x dx` and `I_(1,n)=int_(0)^((pi)/2) sinx cos^(n)x dx=1/(n+1)`
`I_(m,n)={(((m-1)(m-3)(m-5)………(n-1)(n-3)(n-5)………)/((m+n)(m+n-2)(m+n-4)…………….2)(pi)/2,"when both" m "and" n "are even"),(((m-1)(m-3)(m-5)……….(n-1)(n-3)(n-5)..........)/((m+n)(m+n-2)(m+n-4)..........),"otherwise"):}`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

((m-n)^(3)+(n-r)^(3)+(r-m)^(3))/(6(m-n)(n-r)(r-m))=?

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.

If I_(m"," n)=int cos^(m)x*cos nx dx , show that (m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

Prove that: "tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))=(pi)/(4). m, n gt 0

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

If (m)/(n)=(11)/(4) then (m-n)/(n)=?

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1

If I_(m,n)=int cos^(m)x sin nxdx=f(m,n)I_(m-1)-(cos^(m)x cos nx)/(m+n), then f(m,n)=