Home
Class 12
MATHS
If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/...

If `f(x)=x^(5)+5x-1` then `int_(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x))` equals

A

`0`

B

`log_(e)3`

C

`log_(e)4`

D

`log_(e)7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{5}^{41} \frac{dx}{(f^{-1}(x))^5 + 5f^{-1}(x)} \] where \( f(x) = x^5 + 5x - 1 \), we will follow these steps: ### Step 1: Find the values of \( f(1) \) and \( f(2) \) First, we calculate \( f(1) \): \[ f(1) = 1^5 + 5 \cdot 1 - 1 = 1 + 5 - 1 = 5 \] Next, we calculate \( f(2) \): \[ f(2) = 2^5 + 5 \cdot 2 - 1 = 32 + 10 - 1 = 41 \] ### Step 2: Identify the inverse function values From the calculations above, we have: \[ f^{-1}(5) = 1 \quad \text{and} \quad f^{-1}(41) = 2 \] ### Step 3: Substitute \( f^{-1}(x) \) with \( t \) Let \( t = f^{-1}(x) \). Then, we have: \[ x = f(t) = t^5 + 5t - 1 \] ### Step 4: Change the variable in the integral The differential \( dx \) can be expressed in terms of \( dt \): \[ dx = f'(t) dt \] Calculating \( f'(t) \): \[ f'(t) = 5t^4 + 5 \] Thus, we can rewrite the integral: \[ I = \int_{t=1}^{t=2} \frac{f'(t) dt}{t^5 + 5t} \] ### Step 5: Substitute \( f'(t) \) into the integral Substituting \( f'(t) \): \[ I = \int_{1}^{2} \frac{(5t^4 + 5) dt}{t^5 + 5t} \] ### Step 6: Factor out the common term Factoring out \( 5 \): \[ I = 5 \int_{1}^{2} \frac{(t^4 + 1) dt}{t^5 + 5t} \] ### Step 7: Change of variable for integration Let \( u = t^5 + 5t \). Then, the differential \( du \) is: \[ du = (5t^4 + 5) dt = 5(t^4 + 1) dt \] This leads to: \[ dt = \frac{du}{5(t^4 + 1)} \] ### Step 8: Change the limits of integration When \( t = 1 \): \[ u = 1^5 + 5 \cdot 1 = 6 \] When \( t = 2 \): \[ u = 2^5 + 5 \cdot 2 = 42 \] ### Step 9: Rewrite the integral in terms of \( u \) Now the integral becomes: \[ I = 5 \int_{6}^{42} \frac{du}{u} \] ### Step 10: Solve the integral The integral of \( \frac{1}{u} \) is: \[ \int \frac{du}{u} = \ln |u| \] Thus, we have: \[ I = 5 \left[ \ln |u| \right]_{6}^{42} = 5 (\ln 42 - \ln 6) \] ### Step 11: Simplify using properties of logarithms Using the property of logarithms: \[ I = 5 \ln \left( \frac{42}{6} \right) = 5 \ln 7 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{5 \ln 7} \]

To solve the integral \[ I = \int_{5}^{41} \frac{dx}{(f^{-1}(x))^5 + 5f^{-1}(x)} \] where \( f(x) = x^5 + 5x - 1 \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=f(2-x) then int_(0.5)^(1.5)xf(x)dx=

If f'(x)=x^2+5 and f(0)=-1 then f(x)=

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

If f(x)=x^(3) , find the value of ({f(5)-f(1)})/((5-1))

If f(x)=5^(x) , then f^(-1)(x) is :

Let f be a strictly increasing and continuous function in [1,5] such that f(1)=0,f(5)=10 If int_(1)^(5)f(x)dx=7, then int_(0)^(10)f^(-1)(x)dx equals:

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  2. If the function f:[0,8]toR is differentiable, then for 0ltbetalt1 and ...

    Text Solution

    |

  3. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  4. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  5. If f(x)-3cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''...

    Text Solution

    |

  6. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  7. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  8. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  9. If int1^2e^x^2dx=a ,t h e ninte^(e^4)sqrt(1n x)dxi se q u a lto 2e^4-...

    Text Solution

    |

  10. If f(x) is continuous for all real values of x , then sum(r=1)^nf(r-1...

    Text Solution

    |

  11. The value of int0^(pi/2)sin|2x-alpha|dx , where alpha in [0,pi] , is

    Text Solution

    |

  12. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  13. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  14. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  15. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  16. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  17. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  18. The value of int(-g)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  19. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  20. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |