Home
Class 12
MATHS
Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2...

Let `f(0)=0a n dint_0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)i s` log 2 (b) log 7 (c) log 11 (d) log 13

A

`log 2`

B

`log 7`

C

`log 11`

D

`log 13`

Text Solution

Verified by Experts

The correct Answer is:
C

We have `int_(0)^(2) f'(2t)e^(f(2t))dt=5`
Put `e^(f(2t))=y`
`:. 2f'(2t)e^(f(2t))dt=dy`
`:. 1/2 int_(e^(f(0)))^(e^(f(4)))dy=5`
or `int_(e^(f(0)))^(e^(f^(4))) dy =10`
or `e^(f(4))-e^(f(0))=10`
or `e^(f(4))=10+1=11`
or `f(4)=log11`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(0)=0 and int_(0)^(2)f'(2t)e^(f(2t))dt=5. then value of f(4)islog2(b)log7(c)log11(d)log13

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(oo)(e^(-xt))/(1+t^(2))dt, then value of prime 'f''((1)/(4))+f((1)/(4))=

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f,g:(0,oo)rarr R be two functions defined by f(x)=int_(-x)^(x)(|t|-t^(2))e^(-t^(2))dt and g(x)=int_(0)^(x^(2))t^(1/2)e^(-t)dt .Then,the value of 9(f(sqrt(log_(e)9))+g(sqrt(log_(e)9))) is equal to

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. If the function f:[0,8]toR is differentiable, then for 0ltbetalt1 and ...

    Text Solution

    |

  2. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  3. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  4. If f(x)-3cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''...

    Text Solution

    |

  5. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  6. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  7. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  8. If int1^2e^x^2dx=a ,t h e ninte^(e^4)sqrt(1n x)dxi se q u a lto 2e^4-...

    Text Solution

    |

  9. If f(x) is continuous for all real values of x , then sum(r=1)^nf(r-1...

    Text Solution

    |

  10. The value of int0^(pi/2)sin|2x-alpha|dx , where alpha in [0,pi] , is

    Text Solution

    |

  11. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  12. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  13. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  14. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  15. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  16. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  17. The value of int(-g)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  18. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  19. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  20. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |