Home
Class 12
MATHS
int(3)^(10)[log[x]]dx is equal to (where...

`int_(3)^(10)[log[x]]dx` is equal to (where [.] represents the greatest integer function)

A

9

B

`16-e`

C

`10`

D

`10+e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{3}^{10} [\log x] \, dx \), where \([\cdot]\) represents the greatest integer function, we will first analyze the behavior of the function \([\log x]\) over the interval from 3 to 10. ### Step 1: Determine the intervals for \([\log x]\) 1. **Calculate \(\log x\) at the endpoints:** - \(\log 3 \approx 1.0986\) - \(\log 10 = 1\) 2. **Identify the range of \(\log x\) from \(x = 3\) to \(x = 10\):** - At \(x = 3\), \([\log 3] = 1\) - At \(x = 10\), \([\log 10] = 2\) 3. **Identify critical points where \([\log x]\) changes:** - \(\log 4 \approx 1.386\) → \([\log 4] = 1\) - \(\log 5 \approx 1.609\) → \([\log 5] = 1\) - \(\log 6 \approx 1.792\) → \([\log 6] = 1\) - \(\log 7 \approx 1.946\) → \([\log 7] = 1\) - \(\log 8 \approx 2.079\) → \([\log 8] = 2\) - \(\log 9 \approx 2.197\) → \([\log 9] = 2\) ### Step 2: Break the integral into intervals From the analysis, we can break the integral into two parts based on the values of \([\log x]\): - From \(x = 3\) to \(x = 8\), \([\log x] = 1\) - From \(x = 8\) to \(x = 10\), \([\log x] = 2\) Thus, we can write: \[ \int_{3}^{10} [\log x] \, dx = \int_{3}^{8} 1 \, dx + \int_{8}^{10} 2 \, dx \] ### Step 3: Evaluate the integrals 1. **Evaluate \(\int_{3}^{8} 1 \, dx\):** \[ \int_{3}^{8} 1 \, dx = [x]_{3}^{8} = 8 - 3 = 5 \] 2. **Evaluate \(\int_{8}^{10} 2 \, dx\):** \[ \int_{8}^{10} 2 \, dx = 2[x]_{8}^{10} = 2(10 - 8) = 2 \times 2 = 4 \] ### Step 4: Combine the results Now, we combine the results of the two integrals: \[ \int_{3}^{10} [\log x] \, dx = 5 + 4 = 9 \] ### Final Answer Thus, the value of the integral \( \int_{3}^{10} [\log x] \, dx \) is \( \boxed{9} \).

To solve the integral \( \int_{3}^{10} [\log x] \, dx \), where \([\cdot]\) represents the greatest integer function, we will first analyze the behavior of the function \([\log x]\) over the interval from 3 to 10. ### Step 1: Determine the intervals for \([\log x]\) 1. **Calculate \(\log x\) at the endpoints:** - \(\log 3 \approx 1.0986\) - \(\log 10 = 1\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

The value of int_(-1)^(10)sgn(x-[x])dx is equal to (where,[:] denotes the greatest integer function

int_(a)^(4){x}^([x])dx is equal to (where [.] and {.} represent greatest integer function and fractional part function respectively.(13)/(12) (b) (1)/(12) (c) (5)/(12) (d) (17)/(12)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

The value of int_(0)^(15)[x]^(3)dx equals, where [. ] denote the greatest integer function

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

What is int_(0)^(sqrt(2))[x^(2)] dx equal to (where [.] is the greatest integer function ) ?

Evaluate int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1) .Here [.] represents the greatest integer function.

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  2. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  3. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  4. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  5. The value of int(-g)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  6. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  7. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  8. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  9. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  10. The value of int0^oo(x dx)/((1+x)(1+x^2)) is equal to

    Text Solution

    |

  11. For any integer n, the integral int0^pie^(cos^x)cos^3(2n+1)xdx has the...

    Text Solution

    |

  12. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  13. Iff(x)=(e^x)/(1+e^x),I1=int(f(-a))^(f(a))xg(x(1-x)dx ,a n d I2=int(f(...

    Text Solution

    |

  14. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  15. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  16. f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)(nvecoo)[int0^a(f(x)dx)/...

    Text Solution

    |

  17. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  18. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  19. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  20. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |