Home
Class 12
MATHS
int(-1)^(2)[([x])/(1+x^(2))]dx, where [....

`int_(-1)^(2)[([x])/(1+x^(2))]dx`, where [.] denotes the greatest integer function, is equal to

A

`-2`

B

`-1`

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{-1}^{2} \frac{[x]}{1+x^2} \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify the intervals for \([x]\) The function \([x]\) (greatest integer function) takes constant integer values in the intervals: - From \(-1\) to \(0\), \([x] = -1\) - From \(0\) to \(1\), \([x] = 0\) - From \(1\) to \(2\), \([x] = 1\) ### Step 2: Split the integral We can split the integral \(I\) into three parts based on the intervals identified: \[ I = \int_{-1}^{0} \frac{[x]}{1+x^2} \, dx + \int_{0}^{1} \frac{[x]}{1+x^2} \, dx + \int_{1}^{2} \frac{[x]}{1+x^2} \, dx \] ### Step 3: Evaluate each integral 1. **For the interval \([-1, 0]\)**: \[ \int_{-1}^{0} \frac{[x]}{1+x^2} \, dx = \int_{-1}^{0} \frac{-1}{1+x^2} \, dx = -\int_{-1}^{0} \frac{1}{1+x^2} \, dx \] The integral \(\int \frac{1}{1+x^2} \, dx\) gives \(\tan^{-1}(x)\): \[ = -\left[ \tan^{-1}(x) \right]_{-1}^{0} = -\left( \tan^{-1}(0) - \tan^{-1}(-1) \right) = -\left( 0 - \left(-\frac{\pi}{4}\right) \right) = \frac{\pi}{4} \] 2. **For the interval \([0, 1]\)**: \[ \int_{0}^{1} \frac{[x]}{1+x^2} \, dx = \int_{0}^{1} \frac{0}{1+x^2} \, dx = 0 \] 3. **For the interval \([1, 2]\)**: \[ \int_{1}^{2} \frac{[x]}{1+x^2} \, dx = \int_{1}^{2} \frac{1}{1+x^2} \, dx \] Again, using \(\int \frac{1}{1+x^2} \, dx = \tan^{-1}(x)\): \[ = \left[ \tan^{-1}(x) \right]_{1}^{2} = \tan^{-1}(2) - \tan^{-1}(1) = \tan^{-1}(2) - \frac{\pi}{4} \] ### Step 4: Combine the results Now, we can combine the results from the three intervals: \[ I = \frac{\pi}{4} + 0 + \left( \tan^{-1}(2) - \frac{\pi}{4} \right) \] This simplifies to: \[ I = \tan^{-1}(2) \] ### Final Answer Thus, the value of the integral is: \[ \int_{-1}^{2} \frac{[x]}{1+x^2} \, dx = \tan^{-1}(2) \]

To solve the definite integral \( I = \int_{-1}^{2} \frac{[x]}{1+x^2} \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify the intervals for \([x]\) The function \([x]\) (greatest integer function) takes constant integer values in the intervals: - From \(-1\) to \(0\), \([x] = -1\) - From \(0\) to \(1\), \([x] = 0\) - From \(1\) to \(2\), \([x] = 1\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greater integer function,is equal to -2(b)-1zero (d) none of these

int_(0)^(oo)[(3)/(x^(2)+1)]dx, where [.] denotes the greatest integer function,is equal to (A)sqrt(2) (B) sqrt(2)+1(C)(3)/(sqrt(2))(D) infinite

int_(1)^(2)([x^(2)]-[x]^(2))dx where [.] ldenotes the greatest integer function is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

int_(-1)^(1)[x^(2)-x+1]dx, where [.] denotes thegreatest integer function,is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  2. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  3. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  4. The value of int(-g)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  5. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  6. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  7. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  8. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  9. The value of int0^oo(x dx)/((1+x)(1+x^2)) is equal to

    Text Solution

    |

  10. For any integer n, the integral int0^pie^(cos^x)cos^3(2n+1)xdx has the...

    Text Solution

    |

  11. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  12. Iff(x)=(e^x)/(1+e^x),I1=int(f(-a))^(f(a))xg(x(1-x)dx ,a n d I2=int(f(...

    Text Solution

    |

  13. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  14. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  15. f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)(nvecoo)[int0^a(f(x)dx)/...

    Text Solution

    |

  16. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  17. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  18. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  19. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |

  20. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |