Home
Class 12
MATHS
Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A...

Given `int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A`. Then the value of the definite integral `int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx` is equal to

A

`1/2A`

B

`(pi)/2-A`

C

`(pi)/4-1/2A`

D

`(pi)/2+A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx \] We are also given that \[ A = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x + \cos x} \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let \( a = \frac{\pi}{2} \). Thus, \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 2: Simplify the integral Using the trigonometric identities, we have: \[ \sin\left(\frac{\pi}{2} - x\right) = \cos x \quad \text{and} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx \] ### Step 3: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1 + \sin x + \cos x} \, dx \] ### Step 4: Simplify the numerator Notice that: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] However, we will keep it as \( \sin x + \cos x \) for simplicity. Thus: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1 + \sin x + \cos x} \, dx \] ### Step 5: Evaluate the integral Now we can separate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1 + \sin x + \cos x} \, dx \] This integral can be evaluated using the known value of \( A \): \[ 2I = A \] ### Step 6: Solve for \( I \) Thus, we find: \[ I = \frac{A}{2} \] ### Final Result The value of the definite integral \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx = \frac{A}{2} \]

To solve the given problem, we need to evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx \] We are also given that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dx is equal to

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

int_(0)^(pi)(dx)/((3+2sinx+cosx))

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx is equal to

int_(0)^(pi//2) e^x(sinx+cosx) dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  2. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  3. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  4. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  5. The value of int0^oo(x dx)/((1+x)(1+x^2)) is equal to

    Text Solution

    |

  6. For any integer n, the integral int0^pie^(cos^x)cos^3(2n+1)xdx has the...

    Text Solution

    |

  7. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  8. Iff(x)=(e^x)/(1+e^x),I1=int(f(-a))^(f(a))xg(x(1-x)dx ,a n d I2=int(f(...

    Text Solution

    |

  9. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  10. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  11. f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)(nvecoo)[int0^a(f(x)dx)/...

    Text Solution

    |

  12. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  13. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  14. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  15. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |

  16. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  17. int0^(pi/2) (xsinxcosx)/(cos^4x+sin^4x) dx=

    Text Solution

    |

  18. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  19. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  20. The value of the definite integral int(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+s...

    Text Solution

    |