Home
Class 12
MATHS
Let f be a positive function. If I1 = in...

Let `f` be a positive function. If `I_1 = int_(1-k)^k x f[x(1-x)]\ dx` and `I_2 = int_(1-k)^k f[x(1-x)]\ dx,` where `2k-1 gt 0.` Then `I_1/I_2` is

A

`2`

B

`k`

C

`1/2`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `f` is a positive function and
`I_(1)=int_(1-k)^(k)xf[x(1-x)]dx`
`I_(2)=int_(1-k)^(k)f[(1-x)]dx`
Now `I_(1)=int_(1-k)^(k)xf[(1--x)]dx`………………1
`=int_(1-k)^(k)(1-x)f[(1-x)x]dx`………………2
[ Using the property `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`]
Adding 1 and 2 we get
`2I_(1)=int_(1-k)^(k)f[x(1-x)]dx=I_(2)` or `(I_(1))/(I_(2))=1/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

For any tinR and f be a continuous function, let I_1 = int _(sin^2t)^(1+cos^2t) x*f(x(2-x))dx and I_2 =int_(sin^2t)^(1+cos^2t) f(x(2-x))dx. Then I_1/I_2is (i)0 (ii)1 (iii)2 (iv)3

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. The value of int0^oo(x dx)/((1+x)(1+x^2)) is equal to

    Text Solution

    |

  2. For any integer n, the integral int0^pie^(cos^x)cos^3(2n+1)xdx has the...

    Text Solution

    |

  3. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  4. Iff(x)=(e^x)/(1+e^x),I1=int(f(-a))^(f(a))xg(x(1-x)dx ,a n d I2=int(f(...

    Text Solution

    |

  5. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  6. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  7. f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)(nvecoo)[int0^a(f(x)dx)/...

    Text Solution

    |

  8. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  9. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  10. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  11. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |

  12. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  13. int0^(pi/2) (xsinxcosx)/(cos^4x+sin^4x) dx=

    Text Solution

    |

  14. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  15. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  16. The value of the definite integral int(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+s...

    Text Solution

    |

  17. If I=int(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest i...

    Text Solution

    |

  18. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  19. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  20. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |