Home
Class 12
MATHS
The value of the definite integral int(-...

The value of the definite integral `int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx` equals

A

`pi`

B

`(3pi)/4`

C

`(pi)/4`

D

`(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \), we can follow these steps: ### Step 1: Define the integral We start with the integral: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \] ### Step 2: Substitute \( x \) with \( -x \) To utilize the properties of definite integrals, we can perform the substitution \( x \to -x \): \[ I = \int_{-1}^{1} (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \) 2. \( I = \int_{-1}^{1} (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \, dx \) Adding these two equations gives: \[ 2I = \int_{-1}^{1} \left[ (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} + (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \right] \, dx \] ### Step 4: Factor out common terms We can factor out \( (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \): \[ 2I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \left[ (1-x) + (1+x) \right] \, dx \] Simplifying the expression in the brackets: \[ (1-x) + (1+x) = 2 \] Thus, we have: \[ 2I = \int_{-1}^{1} 2 (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx \] This simplifies to: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx \] ### Step 5: Change the integral to a more manageable form Using the identity \( (1+x)(1-x) = 1 - x^2 \), we can rewrite the integral: \[ I = \int_{-1}^{1} \sqrt{(1-x^2)} \, dx \] ### Step 6: Recognize the integral as an even function Since \( \sqrt{1-x^2} \) is an even function, we can simplify the integral: \[ I = 2 \int_{0}^{1} \sqrt{1-x^2} \, dx \] ### Step 7: Evaluate the integral The integral \( \int \sqrt{1-x^2} \, dx \) can be evaluated using the formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] Here, \( a = 1 \): \[ \int \sqrt{1-x^2} \, dx = \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1}(x) + C \] Evaluating from \( 0 \) to \( 1 \): \[ \left[ \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1}(x) \right]_{0}^{1} \] At \( x = 1 \): \[ \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] At \( x = 0 \): \[ \frac{0}{2} \cdot 1 + \frac{1}{2} \cdot 0 = 0 \] Thus, the integral becomes: \[ \int_{0}^{1} \sqrt{1-x^2} \, dx = \frac{\pi}{4} \] So, \[ I = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] ### Final Answer The value of the definite integral is: \[ \boxed{\frac{\pi}{2}} \]

To solve the definite integral \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \), we can follow these steps: ### Step 1: Define the integral We start with the integral: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(-1)^(1)(x+1)dx

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

Evaluate the definite integrals int_(0)^(1)(dx)/(1-x^(2))

Evaluate the definite integrals int_(2)^(3)(1)/(x)dx

The value of the definite integral,int_(1)^(oo)(e^(x+1)+e^(3-x))^(-1)dx is

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

Evaluate the definite integrals int_(2)^(3)(xdx)/(x^(2)+1)

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)(nvecoo)[int0^a(f(x)dx)/...

    Text Solution

    |

  2. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  3. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  4. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  5. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |

  6. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  7. int0^(pi/2) (xsinxcosx)/(cos^4x+sin^4x) dx=

    Text Solution

    |

  8. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  9. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  10. The value of the definite integral int(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+s...

    Text Solution

    |

  11. If I=int(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest i...

    Text Solution

    |

  12. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  13. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  14. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  15. int(-3)^(3)x^(8){x^(11)}dx is equal to (where {.} is the fractional pa...

    Text Solution

    |

  16. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  17. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

    Text Solution

    |

  18. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  19. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  20. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/...

    Text Solution

    |