Home
Class 12
MATHS
The value of the integral int(-3pi//4)^(...

The value of the integral `int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx` is

A

`0`

B

`1`

C

`2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x + \cos x}{e^{(x - \frac{\pi}{4})} + 1} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral Let \( I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x + \cos x}{e^{(x - \frac{\pi}{4})} + 1} \, dx \). ### Step 2: Use Trigonometric Identities We can express \( \sin x + \cos x \) in terms of a single sine function: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, we rewrite the integral: \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{e^{(x - \frac{\pi}{4})} + 1} \, dx. \] ### Step 3: Change of Variables Now, we perform a substitution \( u = x - \frac{\pi}{4} \), which gives \( du = dx \). The limits change as follows: - When \( x = -\frac{3\pi}{4} \), \( u = -\frac{3\pi}{4} - \frac{\pi}{4} = -\pi \). - When \( x = \frac{5\pi}{4} \), \( u = \frac{5\pi}{4} - \frac{\pi}{4} = \pi \). Thus, the integral becomes: \[ I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \sin\left(u + \frac{\pi}{4}\right)}{e^u + 1} \, du. \] ### Step 4: Symmetry of the Integral Now, we can analyze the integral: \[ I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \sin\left(u + \frac{\pi}{4}\right)}{e^u + 1} \, du. \] Notice that \( \sin\left(u + \frac{\pi}{4}\right) \) is an odd function, and \( e^u + 1 \) is an even function. The product of an odd function and an even function is odd. ### Step 5: Evaluate the Integral Since the integral of an odd function over a symmetric interval around zero is zero, we conclude: \[ I = 0. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0}. \]

To solve the integral \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x + \cos x}{e^{(x - \frac{\pi}{4})} + 1} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-(3 pi)/(4))^((pi)/(4))((sin x+cos x)/(e^(x-(pi)/(4))+1))dx(A)0(B)1(C)2(D) none of these

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  2. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  3. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  4. I(1)=int(0)^((pi)/2)In (sinx)dx, I(2)=int(-pi//4)^(pi//4)In(sinx+cosx)...

    Text Solution

    |

  5. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  6. int0^(pi/2) (xsinxcosx)/(cos^4x+sin^4x) dx=

    Text Solution

    |

  7. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  8. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  9. The value of the definite integral int(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+s...

    Text Solution

    |

  10. If I=int(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest i...

    Text Solution

    |

  11. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  12. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  13. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  14. int(-3)^(3)x^(8){x^(11)}dx is equal to (where {.} is the fractional pa...

    Text Solution

    |

  15. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  16. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

    Text Solution

    |

  17. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  18. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  19. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/...

    Text Solution

    |

  20. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dxi se q u a lto e+1 ...

    Text Solution

    |