Home
Class 12
MATHS
If I=int(-20pi)^(20pi)|sinx|[sinx]dx (wh...

If `I=int_(-20pi)^(20pi)|sinx|[sinx]dx` (where [.] denotes the greatest integer function) then the value of `I` is

A

`-40`

B

`40`

C

`20`

D

`-20`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we can follow these steps: ### Step 1: Change of Variable We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] Let’s perform the substitution \( x = -t \). Then \( dx = -dt \) and the limits change as follows: - When \( x = -20\pi \), \( t = 20\pi \) - When \( x = 20\pi \), \( t = -20\pi \) Thus, we can rewrite the integral: \[ I = \int_{20\pi}^{-20\pi} |\sin(-t)| \lfloor \sin(-t) \rfloor (-dt) = \int_{-20\pi}^{20\pi} |\sin t| \lfloor -\sin t \rfloor \, dt \] Since \( |\sin(-t)| = |\sin t| \) and \( \lfloor -\sin t \rfloor = -\lfloor \sin t \rfloor - 1 \) when \( \sin t \) is not an integer, we can express \( I \) as: \[ I = \int_{-20\pi}^{20\pi} |\sin t| (-\lfloor \sin t \rfloor - 1) \, dt \] ### Step 2: Combine the Integrals Now we have: \[ I = -\int_{-20\pi}^{20\pi} |\sin t| \lfloor \sin t \rfloor \, dt - \int_{-20\pi}^{20\pi} |\sin t| \, dt \] Let’s denote the first integral as \( I \): \[ I = -I - \int_{-20\pi}^{20\pi} |\sin t| \, dt \] This leads to: \[ 2I = -\int_{-20\pi}^{20\pi} |\sin t| \, dt \] Thus: \[ I = -\frac{1}{2} \int_{-20\pi}^{20\pi} |\sin t| \, dt \] ### Step 3: Evaluate the Integral of \( |\sin t| \) The function \( |\sin t| \) has a period of \( 2\pi \). The integral over one period is: \[ \int_0^{2\pi} |\sin t| \, dt = 2 \] Since there are \( 20\pi/(2\pi) = 10 \) complete periods from \( -20\pi \) to \( 20\pi \): \[ \int_{-20\pi}^{20\pi} |\sin t| \, dt = 10 \times 2 = 20 \] ### Step 4: Substitute Back to Find \( I \) Now substituting back, we have: \[ I = -\frac{1}{2} \times 20 = -10 \] ### Final Answer Thus, the value of the integral \( I \) is: \[ \boxed{-10} \]

To solve the integral \( I = \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we can follow these steps: ### Step 1: Change of Variable We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] Let’s perform the substitution \( x = -t \). Then \( dx = -dt \) and the limits change as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I=int_(-20 pi)^(20 pi)|sin x|[sin x]dx(where[.] denotes the greatest integer function),then the value of I is -40 (b) 40 (c) 20 (d) -20

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

int_(pi)^(2pi)|sinx|dx=?

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  2. The value of the definite integral int(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+s...

    Text Solution

    |

  3. If I=int(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest i...

    Text Solution

    |

  4. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  5. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  6. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  7. int(-3)^(3)x^(8){x^(11)}dx is equal to (where {.} is the fractional pa...

    Text Solution

    |

  8. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  9. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

    Text Solution

    |

  10. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  11. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  12. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/...

    Text Solution

    |

  13. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dxi se q u a lto e+1 ...

    Text Solution

    |

  14. The value of int(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

    Text Solution

    |

  15. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  16. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  17. int1^4(x-0. 4)dxe q u a l s(w h e r e{x}i safr a c t ion a lp a r tof(...

    Text Solution

    |

  18. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  19. int0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] den...

    Text Solution

    |

  20. int(0)^(x)(2^(t))/(2^([t]))dt, where [.] denotes the greatest integer ...

    Text Solution

    |